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Response of a flexible filament in a flowing soap film
subject to a forced vibration
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The interactions between flexible plates and fluids are important physical phenomena.
A flag in wind is one of the most simplified and classical models for studying
the problem. In this paper, we investigated the response of a flag in flow with an
externally forced vibration by using flexible filaments and soap film. Experiments
show that for a filament that is either in oscillation or stationary, the external
forced vibration leads to its oscillation. A synchronization phenomenon occurs in the
experiments. A small perturbation leads to a large response of flapping amplitude
in response. The insight provided here is helpful to the applications in the flow
control, energy harvesting, and bionic propulsion areas. © 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4906799]

. INTRODUCTION

The interactions between a flexible plate and its ambient fluid are common phenomena in our
daily life and industry, such as a flag flapping in the wind,' snoring caused by the soft palate in human
airway,” and the flutter of a newspaper during its printing process.® These phenomena occur when a
flexible plate structure loses its instability in flow. In recent years, extracting wind or hydraulic energy
from a flexible membrane vibration has become a new way to harvest renewable energy.*> Due to
its theoretical and practical significance, the flapping of a plate in fluid flow has been investigated
extensively both theoretically and experimentally.® The most simplified and classical model for this
problem is a flexible flag in a steady fluid stream. Experimental studies on the flapping behavior of
a flag have been conducted in soap films, water tunnels, and low-speed wind tunnels.!78

By placing flexible filaments in a flowing soap film, Zhang et al.! studied the model of
one-dimensional flags in a two-dimensional wind. Their experimental observations showed that an
initially stationary filament started its flapping motion when both its length and the external flow speed
exceeded some threshold values. A further study by Shelley, Vandenberghe, and Zhang’ showed that
the instability of a flag also relied on the density ratio of the flag to fluid. They employed a temporal
linear instability analysis to study the onset of the flag flapping. Their model considered the density,
length, and bending stiffness of the plate and the density and velocity of the fluid. The instability was
considered to be a local phenomenon, and vortex wake was not involved. Their theoretical analysis
revealed that the system’s instability is controlled by two dimensionless parameters, i.e., dimen-
sionless density (S) and dimensionless velocity (U). Depending on the particular values of S and
U, the possible status of the filament can be either stable (without motion) or unstable (continuous
flapping). A specific term, “stretched-straight state,”! is given to the stable state. Within an unstable
regime, the filament could exhibit a periodic-one, a period-doubling, a quasi-periodic, or a chaos
state, depending on the various combinations of U and S.3° Argentina and Mahadevan'? theoretically
investigated the onset of a fluid induced flutter of a flag that accounted for vortex shedding using
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the Theodorsen approach.!! Their theory predicted the critical speed for the onset of the flapping
as well as the frequency of the flapping. Both the analyses of Shelley, Vandenberghe, and Zhang’
and Argentina and Mahadevan'? are based on linearized theories. The onset of flag flapping is in the
small amplitude regime, where a linear analysis is applicable.

Previous study showed that a fully developed flag flapping is geometrically nonlinear.” And the
flapping amplitude reaches half of its length.! Connell and Yue® developed a coupled fluid-structure
direct simulation of the Navier-Stokes equation and a geometrically nonlinear structural equation to
investigate the full nonlinear flapping of a flag, including the wake effects and variable tension in
the body. Chen et al.® developed a two-dimensional aeroelastic model of a flexible flag immersed
in an inviscid flow by coupling the panel method with an inextensible flag model. They investigated
the transition of a flag from a static steady state to a chaotic state. They found a linear relationship
between the drag on a flag and the Strouhal number in periodic flapping states.

The studies mentioned above focus on a self-excited system, in which the flapping of a flag
interacts with the vortices shedding in its wake.!? Apart from such a self-excited system, attention
is also drawn to a flag’s dynamic response to an imposed pre-specified motion or force applied
to a flag.'>”'7 A study by Alben'? on a pitching flexible body at its leading edge showed that the
generated thrust power has a series of resonant peaks with respect to the body’s rigidity. Michelin
and Smith'3 examined a flexible heaving wing on its propulsive performance numerically and found
that a resonance phenomenon occurs when the forced external oscillating frequency was equal
to the natural frequency of the system. Further investigation by Manela'* on a thin elastic plate
dynamic response to an external excitation illustrated that a resonance motion was excited at the
plate’s eigenmode when the forcing signal contained an eigen-frequency. The non-linear effects are
addressed by Castro et al.'> experimentally and theoretically for a periodically forced cantilevered
plate immersed in a still fluid. Alben et al.'® and Ramananarivo, Godoy-Diana, and Thiria'” inves-
tigated the propulsion performance of a self-propelled flag with a local actuator at its leading edge.
The propulsive efficiency is found to be influenced by the flag’s length, rigidity, and the dissipation
of energy along the flag’s body. These studies reveal that the dynamic of a flag is influenced by the
external motion and force and established a system resonant when the external force frequency and
system eigen-frequencies become close.

The studies of flags’ flapping in flow are reminiscent of the cylinders’ oscillation in flow.
Williamson and Govardhan'®!° reviewed the free and forced vibration of a cylinder. In the free
vibration studies of a cylinder, a rigid cylinder was mounted elastically while being restrained to
move transversely to the flow. The vortex induced vibration (VIV) of the cylinder is a feedback
process between the body motion and vortex motion.'® Once the frequency of the vortex shedding
in the cylinder wake approaches the natural frequency of the flexible mounted rigid cylinder, the un-
steady lift force causes an increased amplitude of the motion via a standard resonance phenomenon.
The cylinder wake is then affected by the enhanced amplitude and forced to move at the natural
frequency of the cylinder.?°

For a forced vibrating cylinder, the rigid cylinder was mounted on a support arm or a
transverse lead screw.?* The cylinder oscillated with a prescribed sinusoidal trajectory relative to the
fluid. Numerical and experimental studies by Gopalkrishnan?! and Karniadakis and Triantafyllou®*
revealed that the response of a forced vibration of a cylinder can either be in lock-in state, in
which the vortex shedding process collapses onto the cylinder’s forced vibration frequency, or in
non-lock-in state, in which the flow motion and force response contain multiple components at both
the oscillation frequency and the vortex shedding frequency. Recent studies consider the forced
vibration of a cylinder as one approach to understanding and predicting the vortex-induced vibration
phenomena of freely vibrating bodies.'®!? Positive energy transfer from the fluid to a cylinder
is required for a free vibrating cylinder in VIV. While for a forced vibrating cylinder, negative
energy transfer may occur. Carberry et al.?® found that forced sinusoidal oscillations replicate many
features of the VIV apart from the energy transfer. In order to simulate all the key features of the
VIV within a sinusoidal forced vibration, the conditions, i.e., the motion of the cylinder, should be
the same as that in a free vibration cylinder.?® Morse and Williamson?*?® compared the free and
forced vibrations with matched experimental conditions. Their prediction from the measurement of
a forced vibrating cylinder agrees with the measurements for an elastically mounted cylinder.

21,22
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Though both the flapping of a flag and the oscillation of a cylinder exhibit similarities, there are
still some major differences between them. In the VIV, wake instability is an essential ingredient.
The wake instability of a cylinder exists even when the cylinder is fixed. However, in the onset prob-
lem of a flag flapping, the study by Shelley, Vandenberghe, and Zhang’ shows that the instability of
a flag can be considered as a local phenomenon without considering the effect of vortex shedding. In
the forced vibration of a cylinder, the cylinder is rigid. The locomotion of the cylinder is prescribed.
Only under the condition that the cylinder repeats its movement exactly the same as that in a free
vibration case does it simulate the dynamics of a VIV cylinder. While in the forced vibration of
a flag, the flag is flexible along its body. This feature allows part of the flag to move at the same
pace as that of the forced vibration while the remaining part reacts as a combination of forced and
free vibration. The locomotion of the flag is associated with the external forced vibration, the flag’s
natural vibration, and the vortex in the wake.

In this work, we use a flexible filament as the flexible flag and soap film as a two dimensional
flow to examine the dynamic response of the flexible filament to an externally imposed vibration
at two initial states, i.e., a stretched-straight state and an oscillating state. Our main objective is
to identify the frequency and amplitude relations between the external forced vibration and the
filament’s dynamic response. Different from the numerical simulation methods used by the above
mentioned studies, here experiment measurements are performed. Examinations focus on assessing
whether an external perturbation would alter the system’s inherent frequency and bring the system
into a resonance state. Particular interest is given to the initial stretched-straight state, where the
filament remains stationary before the forced vibration is applied, which was ignored by most of the
existing studies.

Il. EXPERIMENTAL SETUP AND METHODS

The experimental study was performed in a vertical soap film tunnel®’-*® with a steady fluid

flow speed ranging from 1.3 to 2.1 m/s. The viscosity of the soap film ranged from 2 x 1073 to
1.2 x 107 m?/s. A silk filament of 150 um diameter and 6.2 x 107! Pa m* bending stiffness was
used in our study. The leading edge of the filament was fixed on a linear rail slide with a small
casing (outer diameter 0.9 mm). In order to avoid any disturbance in flow, the casing is kept a tiny
distance from the soap film. The filament out of the casing is immersed in the soap film. It is bent
into the film with surface tension. A wire is inserted into the casing to increase the friction between
the filament and the casing and to prevent any rotation of the filament in the casing. The linear rail
slide was connected to an electromagnetic vibration exciter, providing a sinusoidal forced vibration
to the filament. A high speed camera (Mikrotron MC1311) working at 2004 frames per second was
used to record the filament’s locomotion, as shown in Figure 1.

In our study, three filament lengths, 15, 20, and 30 mm, were used with four flow speeds, 1.5,
1.8, 2.0, and 2.1 m/s. The corresponding Reynolds number ranged from 1.1 x 10° to 5.3 x 10°. The
external forced vibration frequency changed from O to 100 Hz with an incremental step of 5 Hz. The
amplitude of the external forced vibration was limited to below 5% of the filament’s length.

For ease of our following discussions, we define three frequencies:

F,: the external forced vibration frequency,
f: the filament response frequency with external perturbation,
fo: the filament response frequency at its initial status without the external perturbation, which is
also called “the free flapping frequency.”
f1s f2, f3,. ... the primary, secondary, third, etc., frequency components of f in the spectrum
analysis.

The locomotion of the filaments in the flowing soap film was recorded by a high speed camera.
The displacement of the filament was measured from the high speed camera images by an image
processing program developed by us.?® Figure 2 shows the overlap of three cycles of the filament’s
locomotion with different external forcing frequencies. The trajectories of the filament’s trailing
edge are also given in the figure. The length of the filament L = 20 mm and the flow speed V = 1.8
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FIG. 1. Schematic diagram of the experimental setup. The leading edge of the filament is connected to a slide on a linear rail.
The motion of the slide is controlled by an electromagnetic vibration exciter. The exciter is driven by an amplified sinusoidal
signal with the specified frequency and amplitude.

in Figure 2(a) show the filament in a free flapping status. The locomotion of the filament is peri-
odical. The flapping amplitude increases along the filament’s body and reaches its maximum at its
trailing edge. Its trailing edge moves in a figure of “8.” Figure 2(b) shows the filament’s flapping
with an external forced vibration of F,, = 40 Hz. With the forced vibration, the locomotion of the
filament did not repeat in consequence cycles. The envelop of the filament in different cycles was
not repeated. The trailing edge also shows an overlapping of several different sizes of figure “8.”
Figure 2(c) shows the filament with another force vibration of F), = 45 Hz. However, the forcing
frequency only increased by 5 Hz. The locomotion of the filament changes dramatically. And the
flapping becomes periodical again. The trailing edge moves in a single figure of ““8.”

Figure 2 shows that with an external forced vibration, the locomotion of the filament can be
quite different from that of a free flapping filament. One quantitative variable is required to describe
the locomotion. Here, we selected the displacement of the filament’s trailing edge to characterize
the response of the filaments. Figures 3(a)-3(c) show the displacement of the filament’s trailing edge
transverse to the flow and their Fast Fourier Transform (FFT) result, corresponding to the flapping
shown in Figures 2(a)-2(c), respectively. The displacement is non-dimensionalized by the filament’s
length. As we can see from Figure 3(i), the vibration of the filament’s trailing edge is harmonic
in free flapping status and with F,, = 45 Hz, while with F,, = 40 Hz external forcing vibration, the
flapping is tuned. Frequency analysis was then carried out to find the oscillation frequencies of the
trailing edge. The result is shown in Figure 3(ii). In Figure 3(a-ii), the frequency of a free flapping
filament is labeled as fy. The positions of f; are marked with dotted lines in Figures 3(b-ii) and
3(c-ii). In Figure 3(b-ii), dominant frequency components are labeled as f1, f>, and f3. The primary
frequency component is f; = fo, the secondary frequency component is f> = F},, and the third

FIG. 2. Flapping of a filament with different external forced vibration frequencies. Flow speed V = 1.8 m/s, filament length
L = 20 mm. (a) Free flapping of the filament at a frequency fy = 51.9 Hz. (b) The external forced vibration frequency
Fp, =40 Hz, (c) Fp = 45 Hz. In each subplot, the overlapping of the filament in three cycles is shown in the center; on the
right of the overlapped filaments is the trajectory of the filament’s trailing edge.



017101-5 Jiaetal. Phys. Fluids 27, 017101 (2015)

(@) o0af@)

TTTT T T

T T T

© o4f0 TG

0.2f

Amp

0.1f

TN TN T T TN N T N Y T N T Y S N T S S [N TN S S 1 0

\\\\\\I\\:\\\\\\\
0.05 0.1 0.15 0.2 0.25 0.3 0 20 40 60 80 100

£(s) S (Hz)

FIG. 3. Trailing edge displacement with different external forced vibration frequencies in case A. Flow speed V = 1.8 m/s,
filament length L = 20 mm. y* is non-dimensionalized by L. (i) The displacement of the trailing edge. The dots denote the
experimental measurement values. The lines are fitted curves. (ii) The FFT result. The dotted line represents the position of
the free flapping frequency fp. (a) The free flapping of a filament, fo = 51.9 Hz. (b) The external forced vibration frequency
Fp, =40 Hz, (c) F), =45 Hz.

S P

frequency component is a combination of f; and f>, f3 = 2f; — f>. In Figure 3(c-ii), the primary
frequency component is f| = F),.

We carried out a frequency analysis for all the experimental data of the filaments with an
external forced vibration using the FFT method. The result showed that the response consisted of
two major frequency components f; and f,, which are equal to the free flapping frequency f, and
forcing frequency Fj,. The remaining frequency components are their multiplications and combina-
tions and they are much weaker than the primary two components. Thus, the decomposition of the
trailing edge displacement,

y'= ) ArsinQrfit + ), (1)
i=1
can be simplified into a superposition of two waves with their frequencies equal to fo and F},. The
expression is written as

y* =~ A] sin(27rf1t + ¢1) + Ay sin(27rf2t + ¢2)

= Ao sin2n fot + ¢o) + Ap Sin2rFpt + ¢)), @

where y* is the displacement of the trailing edge normalized by the filament length L. A;, f;, and
¢; are the amplitude, frequency, and phase of the ith component of the decomposed trailing edge
displacement. Ay is the amplitude of the free flapping frequency component fo, A, is the amplitude
of the forced vibrating frequency component F),, and ¢, and ¢, are the phases of the corresponding
frequencies, respectively.
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The least squares fitting method is used to fit the measured displacements. The result is
Ag =0.178,¢9 = 2.44,A, = 0 for Figure 3(a), Ap=0.184,¢9=4.05,A, = 0.139,¢, = 0.248 for
Figure 3(b), and Ay =0,A, = 0.283,¢, = 1.87 for Figure 3(c). The fitted curves are plotted in
Figure 3 together with the measured displacement.

To a vibration system, Strouhal number is an important parameter to describe the oscillation
mechanism. The Strouhal number in our study is defined as

St = fA/V, 3)

where f is the flapping frequency, A is the peak to peak amplitude, and V is the incoming flow
velocity. In a cycle, the trailing edge of the filament moves in twice the peak to peak amplitude A.
The numerator fA can be considered as half the average speed of the filament’s trailing edge U. The
definition of Strouhal number is rewritten as

10

St = IV 4)
The Strouhal number is the speed ratio of the structure to the fluid.
The kinematic energy of the filament is expressed as
1 (L
E filament = 5 /0 mluz(sJ)ds’ )

where m; is the linear density of the filament, s is the distance along the filament’s body from its
leading edge, and ¢ is time. u(s,?) is the velocity at position s and time . As we can see in Figure 2,
the displacement of the filament increases from its leading edge to its trailing edge and reaches its
maximum value at its trailing edge. The trajectory of the trailing edge shows that the displacement
transverse to the flow is much larger than that in the flow direction. Here, we use the average speed
of the filament’s trailing edge U as a scale of the filament’s velocity. The kinematic energy integral
approximates on a scale of

Ek filament ~ m1L02_ (6)

Taking the filament length L as a reference length and considering a soap film with a width L
passes the filament, the fluid kinematic energy is expressed as

1
Ek fluid = Edeva, (7)

where p is the density of the soap film and d is the thickness of the soap film. The value of d
depends on the soap film flow velocity.

Using Egs. (4), (6), and (7), we get

Ek filament - SSIZ, (8)
Ex fuid
where S = m;/pdL. S is the dimensionless density which is a control parameter in the instability of
a flag’s flapping.’
For a certain filament and soap film velocity, m;, p, d, and L are fixed. Thus, S is fixed. We get
Ek filament 2
Ey fiuid St ©
St? scales the ratio of the filament’s kinematic energy to the fluid’s kinematic energy. Considering
the external forced vibration is relatively small and only applies on the leading edge of the filament,
the filament’s flapping energy mainly comes from the fluid. St is an index reflecting the kinematic
energy exchange between the filament and the fluid.

For a harmonic vibration like that shown in Figures 2(a) and 2(c), f is equal to the only
major oscillation frequency and A is the peak-to-peak amplitude of the filament’s trailing edge.
However, for a vibration where its response contains multi-frequency components like the one
shown in Figure 2(b), there are two major flapping frequencies and the amplitude of the filament’s
trailing edge changes from cycle to cycle. Here, the primary frequency component which has larger



017101-7 Jiaetal. Phys. Fluids 27, 017101 (2015)

TABLE I. Free flapping frequency (fo/Hz) of filaments in flowing soap
film associated with different lengths at various flow speeds. The values in
brackets are sub-critical frequencies.

Flow velocity (m/s)

Length (mm) 1.5 1.8 2.0 2.1

15 0(33.1) 64.6 70.1 77.4
20 0(21.4) 51.9 58.6 70.5
30 32.0 42.7 54.2 66.3

amplitude in the two frequency components is used as f in the estimation of Sz. For the amplitude,
three candidate variables are available to describe the displacement of the trailing edge. They are the
amplitude of the filament’s flapping envelop, the mean of the amplitudes in different cycles, and the
root mean square (RMS) of the amplitudes in different cycles. In the following study, the RMS of
50 cycles’ amplitudes was used as A in the calculation of S?. It helps to preserve St as an index of
energy exchange between the filament and the fluid.

lll. RESULTS

The dynamics response of a filament is analyzed with the deflection of the filament trailing
edge. With the use of the FFT method, the relation between the external perturbation and the system
response is unveiled.

Table I summarizes the experimental results for a filament’s free flapping frequency ( f) under
different flow velocities (V) and filament lengths (L). As seen in Table I, for the two specific
parameters tested here, i.e., a filament with lengths of 15 and 20 mm in a flow velocity of 1.5 m/s,
the filament free flapping frequency is fy = 0. The filaments are in a stretched-straight state in
the flowing soap film, and no oscillation appears under these conditions. We also measured the
sub-critical frequency of the filament in these conditions, and details are provided in Sec. III B.
Despite the above two conditions, for the remaining parameter combinations, all filaments present
in oscillation states. Given a fixed filament length, its flapping frequency increases with the increase
of the flow velocity. However with the same flow velocity, the filament flapping frequency decreases
with the increase of its length.

In the following, we present our results based on the initial states of the filament without
external perturbation. Case A focuses on the discussion about the dynamic response associated with
an initially oscillating state, while case B concerns the system in an initial stretch-straight state.

A. Case A

In case A, the initial state of the filament is oscillating. External forced vibrations with different
frequencies were applied to the leading edge of the filament. We tested 10 groups for filament length
and flow speed combinations. The results were measured by the displacement of the filament’s trail-
ing edge. Frequency analysis of the displacement by the FFT method was carried out. We found that
a synchronization phenomenon occurs in the response frequency f between its two components that
are equal to the forced vibration frequency F, and the free flapping frequency fo, respectively. This
applied to all the flow velocities and filament lengths tested in this case. A general observation is
that given the forced vibration frequency F), is zero, the filament flaps at its free flapping frequency
fo. With the region of F), being greater than 0 but far from fo, the filament flaps in a quasi-periodic
oscillation state and presents two response frequency components in f. For most parameters, the
dominant frequency component is equal to fj, while the secondary frequency component is equal to
F,. With F), near f, the synchronization phenomenon appears. The system behaves in a period-one
flapping state with a single response frequency that is equal to F),.

Figure 4 shows the result of a filament with length L = 20 mm in case A. In Figure 4(i-iii),
the flow velocities (V) are 1.8, 2.0, and 2.1 m/s, respectively. The free flapping frequencies of the
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FIG. 4. Response of filament with an initial oscillating state. The length of filament L = 20 mm. (i-iii) Triangle, square, and
diamond symbols represent the experimental data at the flow speed of 1.8 m/s, 2.0 m/s, and 2.1 m/s, respectively. F}, is the
dimensionless external forced vibration frequency. (a) f* is the dimensionless response frequency of the filament’s trailing
edge. Filled and opened symbols represent the primary and secondary frequency components of f*, respectively. (b) A* is
the dimensionless amplitude of the filament’s trailing edge. The gray regions denote the variation ranges of the amplitudes in
different cycles. The top and bottom boundaries of the gray regions are the maximum and minimum flapping amplitudes. (c)
St is the Strouhal number of the filament.

filament fo are 51.9, 58.6, and 70.5 Hz, respectively. In Figure 4, the forced vibration frequency F),
and response frequency f are non-dimensionalized by the free flapping frequency (fj) and denoted
as Fj, and f™.

A frequency lock-in phenomenon is clearly shown in Figure 4(a). Within the lock-in regime
where F; is around one, the response frequency of the filament is locked to the perturbation fre-
quency imposing on its leading edge. Out of the lock-in regime, both the perturbation frequency and
the free flapping frequency are observed. In our study, the resonance is centered by the filament’s
free flapping frequency. This frequency lock-in phenomenon is different from the synchronization
or lock-in phenomena in the free oscillation of a cylinder (VIV). In a classical synchronization
phenomenon in VIV, there is a resonance between the vortex shedding frequency and the natural
frequency of the elastically mounted rigid cylinder.'®? The forcing frequency generated by vortices
is locked to the cylinder’s natural frequency. The resonance is centered by the cylinder’s natural
frequency. In both of the VIV problem and present study, the resonance regimes are centered by
the structures’ natural frequencies. However, in the present study, a forced vibration is applied to
the leading edge of the filament externally. The external forced vibration will not be affected by
the motion of the filament and fluid. In the resonance, the filament changes its flapping frequency
to resonate the perturbation frequency once two frequencies become close. By contrast, the lock-in
phenomenon studied here is very similar to the lock-in phenomena in the forced vibration of a
cylinder. In the lock-in regime of the forced vibration of a cylinder, the vortex shedding process col-
lapses onto the cylinder’s forced vibration frequency. Here in the lock-in regime, the filament’s free
flapping frequency component disappears, leaving only the forced vibration frequency component.

The variation of the dimensionless amplitude A* with F}, is shown in Figure 4(b). The ampli-
tudes of the filament in 50 cycles were measured from the high speed camera recorded images. They
are non-dimensionalized by the filament’s length L and denoted as A*. In Figure 4(b), the filled
triangle, rectangle, and diamond symbols represent the RMS amplitudes of the filament trailing
edge. The gray regions are the variation ranges of the amplitudes in different cycles. The top and
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FIG. 5. Amplitudes of two response frequency components. The length of filament L = 20 mm. Triangle (a), square (b),
and diamond (c) symbols represent the experimental data at the flow speed of 1.8 m/s, 2.0 m/s, and 2.1 m/s, respectively.
Filled and opened symbols denote the amplitudes Ao and A ,, respectively. F, is the dimensionless external forced vibration
frequency. A* is dimensionless amplitude.

bottom boundaries of the gray regions dedicate the maximum and minimum flapping amplitudes for
the filament at the corresponding external forced vibration. A large gray zone means the flapping
is tuned like the one shown in Figure 3(b), while a narrow gray zone means the flapping is almost
sinuous with constant amplitude.

Due to the external force vibration applied to the leading edge of the filament, the amplitude
at the filament’s trailing edge is changed. Within a range close to the filament’s free flapping fre-
quency, the amplitude is enhanced. The maximum RMS amplitude reaches 0.61 times the filament
length or 1.74 times the initial free flapping amplitude. In the experiment, the maximum amplitude
was not always observed at the center in the lock-in frequency (F,, = 1) as shown in Figures 4(b-i)
and 4(b-ii). Sometimes it is observed outside the range, as shown in Figure 4(b-iii).

The displacement of the trailing edge is described in Eq. (2). It is a superposition of two
waves. We calculated the amplitudes of two frequency components Ag and A, to investigate their
contributions to the amplitude. Figure 5 shows the variations of Ag and A,. A, increases as the
external forcing frequency increases to approach the free flapping frequency fy. It reaches its peak
at F; =0.963,0.853,0.833, respectively. It then decreases almost linearly until the filament exits
the lock-in status. It continuously decreases as the increase of F); Ap remains around a certain value
outside of the lock-in regime. Since the displacement of the filament’s trailing edge is limited, the
value of A is suppressed with the increase of A,. In the lock-in regime, it becomes 0. In Figure
5(c), which corresponds to Figure 4(b-iii), A, has already increased to its maximum at f* = 0.694
but Ay has not been suppressed. The superposition of two waves creates the maximum amplitude
outside the lock-in regime.

The variation of Strouhal number is shown in Figure 4(c). Given a filament length of 20 mm,
the St numbers without perturbation are all around 0.2, irrespective of the flow speeds. With an
external perturbation, the St numbers vary between 0.11 and 0.35 for most of the tests. Though
the amplitude of the trailing edge may not center around F = 1, the maximum S¢ number centers
around Fy = 1. This suggests that the lock-in phenomenon leads to a large energy exchange be-
tween the structure and fluid. In addition, with some F;, the St becomes lower than that of a free
flapping filament, which indicates that the external perturbation suppresses the energy exchange
between the structure and fluid.

B. CaseB

In case A, the initial state of the filament is stationary, i.e., the free flapping frequency of the
filament f, = 0. When a perturbation is applied (i.e., F}, > 0), the system exhibits a forced vibration
state. The dominant response frequency component is equal to F,. However, we found an additional
frequency component when the external forcing frequency F, is low. The additional frequency
component did not present without the external forced vibrations. It is independent from the forced
vibration amplitude as well as the frequency.

Following the study of Marais et al.> on the impulse response of a cylinder wake below the
critical Reynolds number of the Bénard-von Karman instability, we tested the subcritical response
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FIG. 6. Trailing edge displacement with an impulsive motion applied to the leading edge of a filament. L = 20 mm,
V = 1.5m/s. (a) The displacement of the trailing edge. (b) The FFT result. The sub-critical frequency is marked as fosub)-

of the filament in a stretched-straight state by applying an impulsive perturbation to the leading
edge of the filament. Once the impulsive motion was applied, the filament started to flap. The
flapping amplitude reduced as time passed by. After several flapping cycles, the filament restored
its stretched-straight state. By analyzing the induced motion of the filament’s trailing edge, we
obtained the sub-critical frequency for the filament. Figure 6 shows the displacement of a fila-
ment’s trailing edge and its FFT result. The length of filament L = 20 mm and the flow velocity
V = 1.5 m/s. As we can see in Figure 6(a), once the filament starts to flap, the amplitude of the
filament’s trailing edge increases and then decreases until the filament rests. The FFT result of the
sub-critical response is marked as fo(sup) in Figure 6(b): focsub) = 21.4 Hz. The steps in the waveform
are due to the resolution of the images captured during the test. In Table I, the values in brackets are
sub-critical frequencies for the filament with lengths of 15 and 20 mm at a flow speed of 1.5 m/s.

We found that the secondary response frequency component is equal to the sub-critical fre-
quency. In case B, the initial state of the system is stable. With an external forced perturbation,
external energy is imported into the system, which brings the system out of its neutral stability state.
The existence of a sub-critical frequency component shows the system stability breakdown.

Another finding is related to the induced flapping amplitude. We found that within a certain
range of forced vibration frequency, a small external forced vibration at the filament leading edge
can lead to large flapping amplitude at its trailing edge. This phenomenon is distinguished from the
hysteresis discovered by Zhang et al.,' where the flapping status remains even when the external
force disappears. However, in the current case, the filament restores the stretched-straight state once
the external forced vibration is released.

Figure 7 shows the displacement of the filament’s trailing edge and its FFT result. The forced
vibration amplitude herein is 5%L. The dotted line in Figure 7(iii) denotes the position of the
subcritical frequency. Figure 7(a) is the result with an external forcing frequency F, = 15 Hz. In
Figure 7(a-iii), four peaks are observed from the FFT analysis: f; = F},, f2 = foeu), f3 = 2f1, and
f4=3f1. In contrast to Figure 7(a-iii), the result with an external forcing frequency F, = 40 Hz
shown in Figure 7(b-iii) indicates the existence of only one frequency component, i.e., fi = F),
while the frequency component that is equal to the subcritical frequency disappears. The flapping of
the filament in Figure 7(b-i) is similar to that in Figures 2(a) and 2(c).

We tested periodic forced vibrations with amplitudes of 3%, 4%, and 5% of the filament lengths
(15 and 20 mm) at flow speed of 1.5 m/s, respectively. All of the experimental results confirm
the existence of the sub-critical frequency component at a low forced vibration frequency and the
enhancement of flapping amplitude.

Figure 8 shows some results for case B. The length of the filament L = 20 mm and the flow
velocity V = 1.5 m/s. Since the free flapping frequency of the filament f;, = 0 Hz for case B, the
sub-critical frequency is used to non-dimensionalize the forced vibration frequency F), and response
frequency f in Figure 8. The amplitude is non-dimensionalized by L, and St is estimated using the
primary component of f.

In Figure 8(a), a secondary frequency component appears where F), ranges from 0.23 to 0.93.
Given different forced vibration amplitudes, this secondary frequency only varies a little. Unlike
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FIG. 7. The flapping of a filament at different external forced vibration frequencies in case B. L = 20 mm, V = 1.5 m/s, the
forced vibration amplitude is 5%L. (i) The overlapping of the filament in three cycles. (ii) Trailing edge displacement with
different external forced vibration frequencies. (iii) The FFT result. The dotted line represents the position of the sub-critical
flapping frequency fosub). (@) Fp = 15 Hz, (b) F), = 40 Hz.

case A, here the frequency component which is equal to the forced vibration frequency F, is al-
ways dominant. The flapping amplitude shown in Figure 8(b) presents an increased trend of A* for
F, <3, mainly in a range between 0.93 and 2.1. Consequently, the Sz number also increases with
the amplitude. At F}, around 1.9, the St number is around 0.2, which is close to the S number of the
free flapping filament in an oscillation state.

The amplitude enhancement is limited to a range of forced vibration frequencies. In order to
analyze this phenomenon, we studied the vortex structure in the filament wake. Though the wake is
not a key factor in the onset of a filament’s flapping, it plays a role in the full developed nonlinear
flapping of a filament. According to the Vorticity Moment Theory (VMT) proposed by Wu,* for an
airfoil moving in a fluid in a two-dimensional plane, the lift force per unit length of a airfoil span is
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FIG. 8. Response in the stretched-straight state. The length of filament L = 20. Triangle, square, and diamond symbols
represent the experimental data at forced vibration amplitudes of 3%, 4%, and 5% of L, respectively. (a) Filled and opened
symbols represent the primary and secondary frequencies, respectively. (b) A* is the dimensionless amplitude of the filament’s
trailing edge. (c) St is the Strouhal number of the filament.
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given by

Fszi/ /xa)dxdy, (10)
dt Ry

where x, y are coordinates defining the flow plane, x is the flow direction, p is the fluid density,
Ry is the fluid region, and w is the vorticity. The equation provides an estimation of the lift acting
on the filament. The force relies on the strength of the vortices and their distance downstream. In
the far field from the foil, vortices are presented in pairs with opposite rotating directions. The
lift generated by them is canceled by each other. This leaves only the lift generated by the most
recently shed vortices, i.e., the lift is determined by the last shed vortices and their moving speed
and distance from the filament. Considering the effect of forced vibration at the filament leading
edge, the filament flaps at F},; therefore, the redistribution of flow energy follows the frequency of
F,. The continuously up and down flapping motion redistributes the flow energy associated with
vortices and determines their strength. At a low forced vibration frequency F),, the locomotion of
the filament is too weak to produce sufficiently concentrated vortices. At a high forced vibration
frequency, the flow energy is redistributed into too many vortices. For each vortex, its strength is
also weak. In both conditions, the strength of the vortices is too weak to maintain large amplitude
flapping for the filament.

In Figure 9, three snapshots of a filament’s flapping at forced vibration frequencies of 10 Hz,
40 Hz, and 75 Hz are given. As seen from Figure 9(a), where F),, = 10 Hz, the vortices are so weak
that they are almost invisible. When F, is increased to 40 Hz in Figure 9(b), the flapping amplitude
becomes large and a strong vortices structure is generated, as evident from Figure 9(b). Under
this situation, a large oscillating amplitude leads to a strong vortex, which is able to retain a large
oscillating amplitude. When the forced vibration frequency is further increased to 75 Hz as shown
in Figure 9(c), the vortex in the wake appears to be too weak to interact with the filament, and the
filament tends to be stable and is unable to develop a large amplitude flapping.

IV. DISCUSSION

In the present study, we examined the dynamic response of a flexible filament to an external
forced vibration in a flowing soap film with its initial state either in an oscillating (case A) or a

[PIR—

FIG. 9. Snapshots of flag flapping at different forced vibration frequencies for a stretched-straight case. The filament length
L =20 mm, flow speed V = 1.5 m/s, the forced vibration amplitude is 5% L. (a) The forced vibration frequency is 10 Hz,
(b) the forced vibration frequency is 40 Hz, (c) the forced vibration frequency is 75 Hz.
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stretched-straight state (case B). In an oscillating state, the study shows a synchronization phenom-
enon that the system oscillates at the same frequency as that of the external forced vibration. For an
initial stretched-straight state, the system presents another frequency component in addition to the
forced vibration frequency. With an initial oscillating state, the forced vibration at the leading edge
leads to an increase in the trailing edge oscillating amplitude and St number in the lock-in regime.
In a stretch-straight state, the results show that with some parameters, the St number of the filament
is equal to that in the oscillation state.

St number represents a ratio between the trailing edge velocity and fluid velocity. Though,
its value cannot be used to quantitatively measure the kinetic energy exchange between fluid and
structure. It provides a qualitative way to evaluate the energy exchange. The extent of the extracted
energy for a flexible structure from its surrounded fluid relies on its structural deformation. By
forcing the leading edge to vibrate with small oscillating amplitude, our study on a flexible fila-
ment dynamic response shows that a small amount of energy input into this system can trigger
and even enhance the system instability, which allows the structure to extract more energy from
fluid. The periodic disturbance plays a “bringing a heavy fist out of a light one” role in the system
energy extraction. This idea could be beneficial for exploring and designing some renewable energy
devices based on a flexible oscillating motion.

The experimental setting in the present study is similar to the studies on a forced vibrating cyl-
inder.?!">* In these studies, a lock-in regime was found in the middle of two non-lock-in regimes. In
the non-lock-in state, the dominant frequency component in the wake of the cylinder is equal to the
wake shedding frequency without forcing. The active control method was found to be very effective
in the reinforcement of the vortex street in the wake of the cylinder. Similar results were observed
in the present study. Specifically, in case A, the lock-in regime was found between two non-lock-in
regimes. The free vibration frequency was dominated when the external forced vibration frequency
was far away from the filament’s free flapping frequency. However, when the forced vibration fre-
quency became close to the lock-in regime, the forced vibration frequency was dominant. Moreover,
in case B, the forced vibration frequency component always dominated in the response. Our study
also shows the effectiveness of an active vibration control to enhance the flapping of a filament.
In the existing studies of a forced vibrating cylinder,>*?¢ lift and drag were commonly compared
with that of a free vibrating cylinder. However in our study on the forced vibration of a flag using
a filament in a soap film, the force measurement is hard to perform, especially with the unsteady
movement of the filament’s leading edge. The comparison of forces in the free and forced flapping
of a flag requires further studies with water tunnel experiments and numerical simulations.
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